Processing math: 100%

Monday, 17 December 2012

New Scientist Enigma 1728

This week's Enigma puzzle was interesting enough to publish an analysis.

This diagram shows the dynamics of the situation. V_j is Jack's speed, V_k is Ken's speed. g is their initial goal line separation.



Defining D as the distance between Joe and Ken, we will try to find the minimum of D^2 and hence the minimum of D

D^2 = (g-V_j t cos\theta)^2 + t^2(V_k - V_j sin\theta)^2

D^2 = g^2 - 2 g V_j t cos\theta +(V_j^2 + V_k^2)t^2 - 2 V_j V_k t^2 sin\theta           ..............(1)

The minimum occurs when:

                    \frac{\partial{D^2}}{\partial \theta} = 2gt V_j sin\theta - 2 V_j V_k t^2cos\theta =0                               .................(2)

                    \frac{ \partial{D^2}}{\partial{t}} = -2g V_j cos\theta +2t(V_j^2 + V_k^2) - 4t V_j V_k sin\theta =0 ...............(3)

From (2), 
t= \frac{g}{V_k} tan\theta                                                  ..............................(4)

Substituting (4) into (3):
 -2g V_j cos\theta +2\frac{g}{V_k} (V_j^2 + V_k^2)\frac{sin\theta}{cos\theta} - 4g V_j\frac{sin^2\theta}{cos\theta} =0           .....................(5)

Defining s=sin\theta and multiplying (5) through by \frac{- cos\theta}{2gV_j} :

(1-s^2)-(\frac{V_j}{V_k}+\frac{V_k}{V_j})s+2s^2= (s-\frac{V_j}{V_k})(s-\frac{V_k}{V_j}) = 0 


If V_j < V_k, this quadratic has one solution satisfying s\lt1, namely s=\frac{V_j}{V_k}

so 

sin\theta=\frac{V_j}{V_k} and t= \frac{g}{\sqrt{1-V_j^2/V_k^2}}

Substituting these into (1)  gives:

D^2 = \frac{g^2}{V_k^2}(V_k^2-V_j^2)

so

D = g\sqrt{1 - V_j^2/V_k^2}        ............................... (6)

Substituting the values g=25ft, V_j=12mph, V_k=12.5mph into (6) gives the answer to the puzzle.

The notable aspect of this analysis is that to minimise the distance between them when V_j \lt V_k, Joe runs at an angle \theta where sin\theta=\frac{V_j}{V_k}When V_j \gt V_k, Joe would run at an angle \theta where sin\theta=\frac{V_k}{V_j} in order to intercept Ken.